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A N A L Y T I C A L  T H E O R Y  OF R E G E N E R A T I V E  HEAT 
T R A N S F E R  A N D  STUDY O F  ITS T H E R M O D Y N A M I C  
E F F I C I E N C Y  

B. N. Okunev and M. S. Safonov UDC 66./02.09 

An analytical theory of tile cyclic process of regenerative heat transfer is developed, httroduction of  
operator-valued fimctions of integral operators allowed the authors to formulate an equation for deter- 
ruination of  periodic solutions. A solution of this equation is found in a linear approximation with re- 

spect to switching times. A functional - exergic eflTcien¢3, - is introduced on periodic solutions. The 
analytical solution obtained made it possible to study the dependence of the introduced criterion on the 
parameters of  the system and to describe the time mode of the process in which the thermodynamic 
efficiency is maximum. Comparison of the analytical theory and a numerical analysis of  the problem 
showed that upon choosing an operating mode of  the apparatus that fits the maximum values of  the 
introduced criterion, one can use results of the analytical solution at all admissible values of  the 
switching times. 

Regenerative heat transfer through a layer of solid-phase heat-accumulating material with switching of 
gas flows is a rather common technological operation. Additional interest in this process was generated by the 
prospects for using it as one of the structural elements of adsorption cycles of heat pumps and refrigerators 

I1-31. 
Mathematical simulation of regenerative heat transfer is based, as a rule, on the use of the well-sub- 

stantiated nonstationary one-dimensional equations of interphase heat transfer that are written below. However, 
we strongly feel the need tbr a compact analytical theory of the process that could allow us to distinguish 
periodic solutions of  the nonstationary problem, which are of greatest importance in practice. Lack of this, in 
particular, makes a quantitative analysis of  the thermodynamic efficiency of the system difficult. 

It is obvious that, to find periodic solutions, one must be able to solve analytically the nonstationary 
problem of layer heating with arbitrary initial profiles of temperature. The history of the problem goes back to 
the work of W. Nusselt [4], in which a solution of this problem is obtained in the form of a convolution of 
the initial temperature distribution and combinations of Bessel functions of an imaginary argument. This makes 
it possible, in principle, to calculate step by step the steady-state mode of apparatus operation. However, it 
would be desirable to have a closed solution that describes the steady-state periodic mode of operation of the 
regenerator. It is easily seen that this approach to constructing a periodic solution leads to a system of integral 
equations. 

A review of attempts to describe regenerative heat transfer under various additional simplifications by 
infinite series of  convolution integrals with Bessel functions can be found in [5]. Even if we generalize solu- 
tions of this type to the case of unequal switching times, which is of interest in practice, such cumbersome 
expressions are unacceptable for solving posed problems of thermodynamic analysis of the system. 

Besides the above methods of  reduction of the problem to integral equations, we also use the Laplace 
transtbrm to describe the temperature variation in the gas and solid phases from cycle to cycle with an initially 
unilbrm distribution of  the temperature in the layer. With equal switching times, we can easily obtain recursion 
relations for the transforms of the initial functions. However, upon changing to the inverse transform, the solu- 
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tion is obtained in the form of a cumbersome infinite series [6]. Generalization to the case of unequal times in 
this approach also involves great difficulties. 

We developed an analytical method for obtaining periodic solutions of regenerative heat transfer. We 
succeeded in this thanks to the introduction of operator-valued functions of integral operators. 

Mathematical physics knows examples of the use of  polynomial and exponential types of operator-val- 
ued functions, but of differential operators 17]. In this paper we introduce an exponential function of integral 
operators. This made it possible to tbrmulate an equation tbr determining a periodic mode of  the process of 
regenerative heat transfer and to find the corresponding solution in a linear approximation. 

Mathematical Model of a Regenerative Heat Exchanger .  The problem of utilization of the thermal 
energy of a waste gas flow by means of a cyclic regenerative heat exchanger is considered. In the first stage, 
a hot gas heats a bulk layer of  solid-phase material tbr a time xt. Then the heat exchanger is switched to the 
stage of heating a second flow of gas moving in the opposite direction. The second stage lasts tbr a time ~_~. 

To describe the cyclic process of regenerative heat transfer, we use a one-dimensional mathematical 
model of nonstationary interphase heat transfer: 

001 0¢p 
c~ - N ( q ) - 0 1 ) '  01 (0' q'~) = I , "~-= 01 --¢~, (i) 

0 < ' c < q :  t ; 0 < ~ < 1 ;  

80~_ Ocp 
0k - N R ( 0 n - { p ) ,  02(1 ,7 : )=0 ,  -~"=02--q),  0<T<T2;  ()<~< 1 . (2) 

The equations of the model are written without regard for longitudinal heat conduction and under the condition 
that all thermophysical characteristics of  both phases are constant within the working range of temperatures. 
Due to the large difference in the densities of the gas and solid phases, the process of heat transfer is assumed 
to be quasistationary with respect to the gas phase. The boundary conditions correspond to the conditions of 
a constant temperature of both the hot and cold gases entering the apparatus: Tl(0, t) = T~0 and T2(L, t) = T2o; 

TH~ > T20. 
After a certain number of cycles, the apparatus reaches the cyclic operating mode. The transient proc- 

esses of its reaching this mode are not considered, and periodic solutions of the system of equations (1)-(2) are 
sought. For this purpose we introduce convolution integral operators S1 and S2 that act according to the lbllow- 
ing rule: 

Stq~ = N f dx¢ p (Z) exp (N (Z - ~)), Szq) = NR j" ctx¢p (X) exp (NR (~ - Z)). 
0 ?, 

(3) 

It can be shown that the properties of these operators allow one to determine the product of the operators and 
power series and to introduce operator-valued analytical functions, which are integrated and differentiated term 
by term. As an example of these functions we give an exponent needed in the sequel: 

exp ( -  "cSi) {p = ~ (-  "cSi)n ¢p 
?t ! 

n-~) 

• i = 1 , 2 .  
(4) 

Mathematical operations (differentiation, integration, etc.) in the left-hand side of the equality will be under- 
stood as term-by-term operations in the right-hand side. 

The introduced operators (3) make it possible to reduce the dimensionality of the problem and to write 
an equation for finding a periodic solution of problem (1)-(2) that would include one unknown function. Actu- 
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ally, we express the functions 0i, i = 1, 2 in terms of  ~O: 01 = exp (-N~) +Sffp, 0 2 = $2( p. Then we assume 
that, as a result of  a cyclic operation, the system reached the periodic mode. We assume that the temperature 
of  the solid phase at the beginning of  stage 1 has the distribution over the height of  the apparatus tp0(~). It is 
for this unknown function that we obtain the required equation. 

In stage 1, the evolution of  the system is described by the sum of  two functions: tp(~, 'e) = H(~, 'e) + 
hul(~, "c), where H(~, 'e) is the solution of  the inhomogeneous equation with zero initial conditions and udl(~, 'e) 
is the solution of the homogeneous equation with the initial temperature distribution cpo(~). For H(~, 'e) and 
hUl(~, ~) we have 

T 

H (~, x) = ~ exp [X (SI - 1)] d X exp ( -  N{) = 

0 

"c 

= exp ( -  N~) j" exp ( -  Z) /o  (2 NX/~-q~ ) d x ,  

0 

WI (~, 'e) = exp [(S l - 1) 'e] q% (9).  

Finally, we obtain that at the end of  the first stage the temperature profile in the solid phase has the 
following form: 

q> (~, 'el) = H  (~, T 1) + exp [(S 1 - i) 'ell ~Po (~)- 

The function q0(~, "cl) is the initial condition for the evolution problem describing the stage o f  gas heat- 
ing. Its solution is 

W 2 (~, x) = exp I(S 2 - 1) x] q> (~, I:~). 

Thus, for the unknown function tp0(~) we obtain the final equation 

q% (~) = exp [(S 2 - 1) 'e2l (H (~, "el) + exp [(S 1 - 1) "ell cp0 (~)) .  (5) 

It is obvious that quasiequilibrium conditions of  regenerative heat transfer that provide a low level of 
losses of  thermal exergy are attained with a sufficient volume o f  heat-transfer material; characterized by the 
parameter N, and relatively low values of  the switching times 'tl and "e2- Therefore,  we restrict ourselves to 
solution of  Eq. (5) in a linear approximation with respect to "rl and "e2- 

In first order with respect to 'el and 'e2, Eq. (5) takes the |bllowing form: 

0 = 'el exp ( -  N~) + 'el (S1 - 1) q~0 + x2 ($2 - 1) ~P0- (6) 

We note that the times of  the stages 'el and 'e2 enter this equation uniformly, i.e., the unknown function ~P0 
depends on the ratio of  these quantities. Therelbre, tbr further calculations it is convenient to introduce the 

variable ~, = "c2/'e I. 
It is easy to verify that the function 

), (R + !) exp ( -  la~) 
(~ + 1 ) R exp ( -  Id) (~, - R) N 'e~ 

q~off,)= ~ ' ~- ~.+I ' ~" =- "el 
- exp ( -  ~t) 

(7) 

is the solution of Eq. (6). At ~ / R  -- 1 we obtain a degenerate solution - the linear profile 
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Fig. 1. Exergic criterion q vs. k at R = I (a) and vs. R at ~. = I (b): l) N 
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The analytical solution obtained allows one to rationally organize a numerical analysis of  the problem 
and study the dependence of the criterion of thermodynamic ideality on the parameters of  the system. 

Criterion of Thermodynamic Ideality of the Cyclic Process. Let AHj = JiC 1 J dt(TL('r'' = L ,  t )  - Tl0  ) 

< 0  be the change in the gas enthalpy in the first stage of the process and AH 2 = J2C2Jd t (T2(z  = O, t) 

-T20 > 0 be the total amount of heat used tbr heating the cold gas in the cyclic process in one period. The 
P 

chan~e in the entropy of the hot gas in the first stage is AS1 =,l~C~Jdt~ In (Tl(= = L, t)/Tlo <0.  The change in 
the entropy of the cold eas in the second staee is AS, = . I ,C,  J d t  In (TX= = 0, t) /T,o > 0. The decrease in the 

exergy of the hot gas in the first stage is defined by the quantity AEI = AHI - T~A~I (AEj < 0), and the change 

in the exergy of the heated-gas flow is AE 2 = AH2 - Teu~,S'2 (AE2 > 0). 
We define the exergic efficiency 1"1 as the ratio of the increment in the exergy of the heated gas in the 

second stage AE 2 to the maximum possible removal of exergy from the hot gas in the first stage AE] *), corre- 
sponding to the conditions where the gas temperature at the outlet from the apparatus in the first stage is equal 
to the gas temperature at the inlet in the second stage, Tl(= = L, t) = T20: 

q = k a g 2 / -  AE[ *) , 

where 

- AE~ *) = sup ( -  AEI) = J tCl t l  (Tio - T2o - T o In (Tl0/T20)). 

The criterion formulated differs from traditional criteria of  exergic efficiency [8] and accounts for the 
special properties of the cyclic process. We emphasize that the criterion integrally reflects the effect of  both 
sources of  losses of thermal exergy in regenerative heat transfer: insufficiently complete removal of  heat from 
the heating gas (incomplete cooling of the gas in the first stage) and incomplete transfer of thermal exergy 

from the heat-accumulating material to the heated gas. 
Change in the Thermodynamic Efficiency as a Function of the Control Parameters of the System. 

First, we give the general laws of the change in the criterion q as a function of the parameters ~, R, and N 
that proceed t¥om the above-obtained analytical solutions of the initial system of equations (1)-(2). Then, on 
the basis of  a numerical analysis of  this system, we show that the applicability range of the analytical solutions 
covers the range of the working parameters within which the values of  the exergic efficiency are maximum. 

As is shown in Fig. la, the dependence of the criterion q on X at fixed R and N has a pronounced 
extremum character. At relatively small times of the second stage (small ~.), the temperature profiles are con- 
vex; the main temperature difference and the generation of entropy (the exergy losses) are concentrated in the 
vicinity of  the inlet of the heated flow. In contrast, at relatively small times of the first stage (large Z), the 
temperature profiles become concave; the main change of temperature and the generation of entropy are con- 
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TABLE l. Maximum Values of the Criterion and the Values of ~. Corresponding to Them as Functions of  N at R = 1 

N 3 6.5 10 40 70 100 

0.43 0.65 0.75 0.93 0.96 0.97 

~. 1.199 1.144 1.108 1.033 1.019 1.014 

/0 

V2 

5 
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Fig. 2, Extrema of the exergic efficiency of regenerative heat transfer on 
the phase plane of the control parameters "~l and x2 at R = 1: 1) N = 10; 
2) 100; 3) straight line ~, = R. 

centrated at the inlet of the hot flow. The situation where the temperature profiles approach a linear one (de- 
generate solution (8)) corresponds to an extremum of r I. In this case, the generation of entropy is unitbrmly 
distributed over the entire height of  the apparatus, but it is small due to a small motive tbrce of the heat-trans- 
fer process. 

Table ! shows the manner in which the process of regenerative heat transfer should be conducted tbr 

the criterion of thermodynamic efficiency to remain maximum. The maximum values of the criterion and the 
values of ~, corresponding to them with the number of transfer units N increasing from 3 to 100 are given. It 
is seen that the values of the criterion increase with N. Similar regularities hold true at other values of  R. 

Figure lb illustrates the dependence of the criterion of efficiency r I on the parameter R at fixed X and 
N. The maximum value of the criterion increases with the number of  transfer units. 

It follows from the analytical solution that at a rather large number of  transfer units, viz., when the 

inequalities N >> I and NR >> I are met, the maximum value of q for given N and R is reached for the con- 
dition ~,---R, i.e., CiJlt l  = C2.I2t2. Under these conditions, r I is expressed by the asymptotic formula 

1"1=1 
Yo In y 
y-1 

In the general case, beyond the region of validity of the analytical solutions, the temperature profiles 
and the criterion 1"1 depend not only on the ratio of the switching times ~. but also on the values of  xl and "c2 
themselves. A numerical analysis of the initial system of equations (1)-(2) showed that at fixed N and R the 
graph of the function ~l(x,, z2) is a surface that has the form of a crest. On the phase plane of Xl and x2, the 
coordinates of  its peaks lie on an extremum that is a concave curve that coincides with the above-obtained 

asymptotic straight line ~2 = ~.Xl at the coordinate origin, but with increase in xl it departs from this curve. 
When the conditions "l:l < N and q:2 < NR, which correspond precisely to the region of relatively high values of  
1"1, are met, the deviations do not exceed several percent. Figure 2 shows that the extrema that are found by the 
numerical analysis of the initial system of equations (1)-(2) virtually do not differ from the extrema given in 
the table. Thus, we can draw the conclusion that in choosing an operating mode of the apparatus that corre- 
sponds to large values of the introduced criterion, we can use results of  the analytical solution at all xl and "c2 

for which "~1 < N and "t2 < NR. 
The numerical analysis of the problem also showed that in moving along an extremum, i.e., with in- 

crease in xi, the value of q decreases monotonically. This is associated with the increase in the generation of 
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Fig. 3. Values of  the exergic efficiency in moving along extrema at R = 
1: !) N = 10; 2) 40; 3) 100. 

entropy in the system caused by the increase in the temperature gradients in switching from one stage to the 
other when the times of the stages are lengthened. When "~l > N and 1:2 > NR, the value of 1"1 decreases sharply. 
Figure 3 shows the course of the decrease of the criterion of thermodynamic efficiency in moving along the 
corresponding extrema and illustrates the region on the phase plane of 1:1 and z, where the analytical solution 
(7) can be used tbr evaluating the introduced criterion. It is seen that the smaller the value of N, the more the 
calculated value of r t for a given "ti differs from the theoretical one, i.e., from 1"1 at T1 ----> 0. 

Considering the decisive role of  N in attaining a high thermodynamic efficiency, we note that for a 
specified volume of the apparatus and specified gas flows, the coefficient of  heat transfer ot should be in- 
creased in order to increase N. This can be achieved in systems with a hierarchically organized spatial structure 

of the bulk layer 19, 101. 

N O T A T I O N  

C, heat capacity at constant pressure, J/(K.kg): /o(~), modified Bessel function; .I, mass flow rate of the 
gas, kg/sec; M~, mass of the solid phase, kg; L, height of the apparatus, m; T, absolute temperature, K; To, 
ambient temperature; t, time, sec; tl, t ime of stage 1; t 2, time of stage 2; z, coordinate in the direction of gas 
motion in stage 1, m; (z, volumetric coefficient of interphase heat transfer, J/(m3.secK); p, density, k J m  3. Di- 

mensionless variables: Oi = (Ti - T2o)/(Tlo - T20), i = 1, 2 for the gas temperature; g~ = (T, - Tzo)/(Tm- T2o) for 
the temperature of the solid phase; N = ocMs/(psClJ]), number of transfer units for stage I; R = CIJI/C312; ~t 
= Tlo/T2o; ~ = T¢v/T2o; ~. = 1:_~/'1:1; ~ = z/L; ~ = t/ta; ta = C@Jot. Subscripts: 1, stage of solid-phase heating; 
2, stage of gas-phase heating; s, solid phase. 
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